If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-42X+196=0
a = 1; b = -42; c = +196;
Δ = b2-4ac
Δ = -422-4·1·196
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-14\sqrt{5}}{2*1}=\frac{42-14\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+14\sqrt{5}}{2*1}=\frac{42+14\sqrt{5}}{2} $
| 6=-2t-4 | | 25=2*3+2l | | 3.14=x/6 | | 5x-3+4x=27 | | 5x+28=3x+2/5 | | 2x+115+118+81=360 | | 4-3x-2x=x+28 | | 20=28*3+2l | | 5x-(2x-8)=85 | | 7x+85+22+37+69=360 | | 6-(3-y)=-6 | | 5n^2–3n=0 | | 3m^2-20m+25=0 | | 8x-(2x-5)=47 | | 0.5x+2=82 | | 5x+16+92+102+100=360 | | 3^2-17z-56=0 | | x-10=5x+15 | | 23x−5=12x−3 | | 8(9b+7)=-16 | | 5(12y+5)−45=12y−1+110y | | 1/2(4x+10)=15 | | 5x+21=-14 | | -3w-48=7(w-4} | | 3/10x+9=3-0.1x | | -7x-9+x=3x-2-2x | | 2x+50=4x-29 | | x^+14x-120=0 | | -8=4(v-7)-8v | | 9(x-20)=5(x+8) | | |3x+2|=1 | | 4(3x+2)=3(4x+2) |